
I I I I I I I I I I I I I I I I I
BY DAVID McGOVERAN

More easily remembered and executed, stored procedures are a means
of extending and customizing SQL to the needs of an environment
and significantly reducing overhead; here's a look at how they work

A MONG THE CUR­
rent extensions to

standard SQL offered by various
vendors, stored procedures are
probably the least understood.
When a vendor says that they of­
fer procedural extensions to SQL,
most of us know they mean the
ability to combine IF-THEN,
WHILE, BEGIN-END, and similar
procedural constructs with SQL
statements. Even here, features
differentiate the products, such as
the ability or inability to declare
local variables. But by and large,
the concept of "procedural SQL'' is
universally understood.

Stored procedures, however,
can mean quite different things to
different vendors. ANSI's SQL
committee has been addressing is-

sues such as stored procedures,
triggers, and referential integrity,
but has yet to issue a standard syn­
tax. In this article, I will try __ to
characterize the variations among
vendors, give some examples, and
explain some of the more power­
ful uses of stored procedures. I
will also point out pitfalls and
problems and look at what the fu­
ture is likely to hold.

Stored procedures offer a
kind of object-oriented approach
to relational database manage­
ment. The stored procedure is
used to define the operations (or
methods) that can be performed
on the object. Since most relational
DBMSs do not provide an integrat­
ed means of defining objects other
than through tables, the object is

DATABASE PROGRAMMING & DESIGN
29

an abstraction defined by a set of
stored procedures that manipulate
it. The data of an object instance
can be represented by the rows in
a single table or multiple tables.
By excluding permission to modi­
fy the base tables, the object can be
encapsulated; that is, the data re­
presenting the object can be ma­
nipulated only through the stored
procedures. If the relational DBMS
supports nested procedures, a form
of inheritance can be provided.

As an example, consider a set
of stored procedures that provide
various legal operations on a set of
tables representing a general led- !!'!
ger. Regardless of how the data re- i
quired to support a ledger is dis- a:

tributed among the tables, the user ~
only needs to perform certain ~

operations (credit, debit, add, de­
lete, view, and so forth) on the
necessary accounts.

These operations are provided
via stored procedures. Access to the
base tables is never granted the
user-no data access is possible ex­
cept via these procedures. By using
a consistent nomenclature, the
names of stored procedures can
even be made to look like object­
oriented messages: the first part of
each stored procedure names the
object and the second part names
the action (method) to be executed.

HOW THEY ARE USED
The uses of stored procedures are
many and can be divided into
approximately the three categories
of performance, management, and
development.

Performance. Stored proce­
dures improve performance in a
number of ways. Because stored
procedures need not be fully inter­
preted at runtime, some redundant
overhead associated with fre­
quently repeated SQL statements
is eliminated. Depending on the
product, this can include overhead
~ated with parsing, validity

.. ,1 .. :~· V -1 J • •

1111 r 11 ·rrrrrrl 111
Stored

procedures
eliminate much
SQL redundancy

checks, perm1SS1on checks, and
query optimization (Figure 1).

If the stored procedure is
cached in memory, it can be ex­
ecuted rapidly without incurring
the 1/ 0 associated with looking up
the procedure on disk. Even if the
stored procedure is not in cache,
the disk 1/0 overhead to retrieve
it is often considerably less than
the terminal 1/0 overhead re­
quired for a program to make the
same request in SQL. The degree
of improvement depends on the
complexity of corresponding SQL
statements.

In a distributed processing
system (which may Or may not in­
volve distributed database man­
agement), network traffic can be
greatly reduced by issuing a single
procedure request rather than a re­
quest per SQL statement. This im-

, , · . Parameter
1

: substitution ·

• .!,'.

·:·.\"• ---- ---- -----
PrcitectiOn .checking"· . • · :' '
'1• . 1 · >'.: • ·'. ,t

'oetef1 .. i~~ s"tegy ~; ; ... !:·-
.• "l'"J~ . ~.. • ' • • J ""'·.. \ - '

' ~~~;.··...: ·• ' '\ • :.;7~:'! . .• ,,. .. ~~ ..
. • ~ •\:. 'I ' ' ' ""' ,., ~

Produce COITlQiled query 'plan ; · l1· .. -·-·~- ... '; ·."•
Execute· · · ' ~ · •
.. : t ' ':.l':'"J:· .. 4. : ·• ~· ·• .• : •
Retui'n results -·, ' : : . . •.

: .. ·. - -.- : .. ~, ..
,...1. A typical SQL statcnmt is processed through the steps on the left path,
while stored commands and procedures take the less costly right-hand paths.

SEPTEMBER 1989
30

proves the likelihood that a given
request will transmit error-free by
eliminating the need to send the
entire text of a set of SQL state­
ments across the network. Even in
a virtual client-server environ­
ment (that is, both on the same
physical machine), communica­
tions overhead is reduced.

Remember that distributed
processing and/or data manage­
ment is not the same as d istributed
DBMS. Remote stored procedure
support does not constitute distrib­
uted DBMS implementation, al­
though it is very powerful.

The functionality of stored
procedures is essential for main­
taining site autonomy in a distrib­
uted processing environment. By
allowing remote modification only.
through stored procedures, the lo­
cal DBA can have complete control
over a site's data.

Parameter substitution and
returning user-defined return
codes further decreases communi­
cations overhead. Parameter sub­
stitution eliminates passing the
same data value more than once
even when it is used multiple
times in perhaps multiple SQL
statements. User-defined return
codes provide a compact means of
informing the application about
stored procedure processing. A
single, judiciously chosen integer
return code can completely alter
subsequent front-end processing,
including the interpretation of re­
turned results tables.

Often, if the vendor supports
procedural extensions to SQL and/
or multiple statements per ~tored
procedure, requests to the database
can be processed asynchronously
with front-end processing. The abil­
ity to issue a complex request that
provides for conditional execution
of SQL statements and error pro­
cessing eliminates much of the
front-end's work.

Suppose that your applica­
tion requires that you obtain data
from one table if a certain condi­
tion exists and from another table
if a different condition exists .
While this can be done with a
complete set of relational opera­
tions, when many conditions exist
on multiple tables the resulting
SQL can be so complex that no
query optimizer can find the opti­
mal access plan in a reasonable

time. Procedural extensions to SQL
used with stored procedW"eS sim­
plify processing, make the third
generation language (3GL) easier to
read and write, and provide a
means for the applic.ation to obtain
meaningful results regardless of the
base tables that must be accessed.
This means fewer requests to the
database and leads to higher
throughput overall (Listing la-d).

Finally, some relational
DBMSs allow multiple applications
to use a stored procedure. Just as
most modem operating systems
provide a means to create program
libraries for use by multiple applica­
tions, relational DBMSs using
stored procedures provide a means
for creating a library of SQL code.
This way, total memory and disk
space required to cache and store all
procedures, respectively, can be re­
duced. While this is particularly im­
portant for managing cache mem­
ory, it may not be desirable for too
many applications to share a stored
procedure. Further c.ache savings
can be obtained if the stored proce­
dures are re-entrant.

Management. As a manage­
ment tool, stored procedures are a
powerful means of exerting access
control. Certainly one can GRANT
read or write permission on a ta­
ble-by-table basis to users. Howev­
er, to do so without strong domain,
entity-relationship, and referential
integrity controls is too risky in
many applications.

Consider, a banking applica­
tion in which a data entry operator
is supposed to update accounts. To
GRANT write permission on the
table containing account balances
involves considerable trust. The
value of a debit might not be with­
in the allowed range for the par­
ticular customer; also, complex
qualifications against the customer's
history, current bank policy for that
type of account, the data entry oper­
ator, and other circumstances make
blanket write permission on the ta­
ble undesirable.

If the rules involved are uni­
versal for all applications that up­
date the table, then using an integ­
rity mechanism such as triggers
becomes viable. However, most
such rules have meaning only on
an application-by-application ba­
sis. In these circumstances, permi~
sion on the base tables c.an be de--

I I I 11 I 11 1 I 111 I 111

Ustlna 1a. Embedded 8QL u.nple.
min()
{

1•

int f1nUGio;
int lesUGio;

'ti' d.'.:
.·;. :--;.> . . , ..

..... : 1ilb-=-•1 l <:,;;.. 1

• "~;iH· . ··

•• initialize variables t11rot91 5(91 •ens then execute ' -.
sedcleCI SQl trlnSICtton

. .
for (1 • finUchl; 1 c lasUGio; 1++)

{ . .
J •• '

.. , .
EXEC SQL INSERT INTO tobertsol Yed

. · SEl.£CT • RQI •Ioyee

; .,:.t,t~,~i..•>lfl ~~ .. CJ• "1 '.' ... I•

J'1 .. .~\~f'i.S ti, j;p ,,_ \ tt} -~' , ••

llEllE 1chl • :• .1Gio; ·

EXEC SQL IRETE RICll •loyee
IHRE 1chl • :• .1Gio:

EXEC SQl allllT QI
}

}

.
lll.ETE FllOI -1Gyee . •. • ~ •N

liERE ichl~- :• .1Gioj:".
... ,.,.

ClllllT D(

1 • 1 + 1:
EllJmlllE; ' .

Bii;

lllTUll 1.-c. Stored procedure example.

DATABASE PR'oGRAMMING & DESIGN
31

...... •!?'i.:~ .. 1 : •• ~;·
. ·.· I

I• ...;,.' I

' t u ... ~ ;, (\J ' .•

·i

-· • ·.1

.. ~~ ... J.

nied and permission to execute a
stored procedure given instead.
This precludes modifying the ta­
ble in any way other than in the
prescribed manner.

Using stored procedures in
this way leads to the possibility of
asserting not only application-spe­
cific business rules but general
ones as well. Referential integrity
can be maintained with sufficient
effort, although other mechanisms
may be preferred. For example,
triggers can be used to cause cas­
cade deletes and updates by speci­
fying them once, whereas each
stored procedure would have to be
written to execute all the appropri­
ate modifications on all tables that
the procedure modifies. Analyzing
the requirements can be difficult
enough in complex database appli­
cations without trying to maintain
all the necessary SQL.

In a sense, stored procedures
provide a means to extend and

CREA TE PROCEDlllE sp_addlog1n
Ologin- YARCHAR(JO),
oPasswd YARCHAR(JO) • IU.L,
Odefdb YARCHAR(30) • ·1aster•
AS
DECLARE (UEg varchar(250)
IF ssuser-1d() I• 1
BEGIN

11111-11111-Tl 11111

Procedures can
be used to update

the base tables
of views

customize the SQL language to the
needs of an environment. Each
stored procedure name becomes a
high-level verb that users can re­
member and execute more easily.

The complexities of typing
correct-as-intended SQL interac­
tively in all but the most straight­
forward applications make SQL an
undesirable end-user language.
Even if one is careful not to com­
mit changes resulting from unin­
tended SQL and roll them back,
the cost of doing so can be over­
whelming. Not only might locks
have been held unnecessarily (re­
ducing concurrency), but the con-

PRINT "Only the Syste11 Am.1nistrtitor 1111y EXECUTE this procedure·.
REru!N(1)

END
1• Use nested procedure to check that Ologiname is valid. •I
DECLARE oreturncode INT
EXECUTE oretlrncode • S1LYal1dname @login•
IF oretlrncode I• 0
BEGIN

srucT UEg • • • • + Ologiname + • • is not a valid name.•
PRINT 11S9
RETURN oretirncode

Bil
IF EXISTS(saECT • FIKll syslogins WHERE 118111e • Ologin-)
BEGIN

Bil

PRINT "A user with the specified login n- already exists."
REru!N(1)

IF NOT EXISTS(saECT • FIKll sysdatabases lllERE name • Odefdb)
BEGIN

PRINT "Database name not valid - login not added."
REll.flll(1)

Bil
INSERT INTO syslogins(suid, status, accdate, totcpu, totio,

SJ*el.191 t, tueltm t, resu1 tltm t. dbll8llle. name. password)
SELECT MAX(su1d)+1, 0, GETDATE(), 0, 0, 0, 0, 0, Odefdb,

Olog1118111e, GpaSswd FIKll syslogins
PRINT "Mew login created.•
RET\llN(O)
GO

LISTHll 1d. A more complicated nested procedure (courtesy Sybase).

SEPTEMBER 1989
32

sumed CPU time could be great.
Indeed, there is no way to

eliminate retroactively the cost of
having processed an unintended
SELECT statement. Consider the
following (possibly too transpar­
ent) example with two SQL state­
ments. The only difference exist­
ing between them is one character,
but the cost is tremendous if MY
_TABLE is very large:

SELECT• FROM MLTABLE
W~ KELflllill = KELFRD2

SELECT • FROM MLTABI..£
WlfR£ K£Y_flfl.Dl = K£Y_f1B..Dl

Stored procedures can be used to
greatly diminish the likelihood of
such typographical errors, as well
as the potential resource costs,
through the selection of meaning­
ful procedure names. These steps
make SQL a more customized,
user-friendly language.

Stored procedures can be
used to update the base tables of
views, although one must be care­
ful not to treat this capability as
though it were view update sup­
port. Rather, it provides a means
of implementing functions that
are equivalent to views and of de­
fining the inverse functions.

Using stored procedures in
this way is quite powerful and
may be more desirable than view
update, considering that views are
used primarily to assert security
and as a convenience for simple
tabular reports. However, because
the general view update problem
is unsolvable, views are not ten­
able for controlling updates or in­
serts except in simple cases. Stored
procedures offer a means of modi­
fying base tables as well as per­
forming the function of a select on
a view at the expense of using a
different syntax.

Experience with relational
applications has shown that as the
number of embedded SQL mod­
ules increases, so does the cost of
making changes to the database
schema or to the SQL for perfor­
mance optimization, because these
modules may well have to be re­
compiled and relinked. Although
changes to the database schema
are easily effected, the impact on
applications is costly. Eventually,
the cost becomes so great that the

1

" l

------ --------1 fl l I I l l l l l l l I l l l
advertised flexibility of relational
databases is lost.

Development. Perhaps the
most significant use of stored pro­
cedures is that they provide a
means of enforcing schema tran­
sparency (see ''Twelve Rules for
Stored Procedures," Rule 1). For a
3GL application, executing opera­
tions within the DBMS can be
viewed as a (possibly complex) se­
ries of function or subroutine calls
that happen to manipulate data in
a data store. Good program design
dictates that functions should hide
particular file access methods, the
particular file structure, and any
local data elements. It should be
possible to treat the function as a
black box, minimizing the degree
of coupling between modules.

Stored procedures allow the
database programmer to extend
this design philosophy into the
DBMS. The stored procedure
"function" is specified by a set of
input and output parameters and
the work to be done. By uncou­
pling the application from the
database schema, the structure of
the database can evolve without
invalidating applications. As well,
the SQL code can be altered to ac­
commodate changes or for perfor­
mance optimization.

The 3GL programmer need
only think in terms of, and com­
municate to, SQL coders in stan­
dard (and very familiar) black box
functional specification: the "goes
into's," "goes out-of's," and the
"gotta do's." If these change, then,
by definition, the application re­
quirements have changed. All oth­
er changes are internal to the rela­
tional DBMS "function." Source
code control, impact analysis, de­
bugging, and release management
are all significantly improved over
the embedded SQL approach.

With the 3GL programmer
uncoupled from the details of the
SQL and the database schema, pro­
ductivity and staffing improve
(see ''Twelve Rules for Stored Pro­
cedures," Rule 2). The 3GL pro­
grammer can code a series of stubs
supplied by the SQL specialist.
The programmer need not even
learn SQL; nor would the SQL
specialist need proficiency in the
particular 3GL, thus making large
projects easier to staff and manage.

If the 3GL programmer has

written general purpose routines
that use stored procedures, consid­
erable flexibility can be trans­
ferred from the relational database
to the application. In effect, appli­
cations become not only table­
driven, but SQL-driven. Signifi­
cant changes to the details of the
application can be made by chang­
ing the SQL that a stored proce­
dure executes without modifying,
recompiling, or relinking 3GL
code. At most the user has to shut
down the application and rein­
voke it after a brief pause. In many
cases, automatic recompilation is
sufficient to keep things going

without the application's user ever
knowing the difference.

The vendor can supply stored
procedures that update or report on
systems tables without subjecting
the OBA to the details of the SQL
involved. Once learned, these
stored procedures are a special and
efficient OBA command-line lan­
guage that need not change. Even
when significant changes are made
to the systems tables they can be in­
creasingly hidden from the user
with new releases of the relational
DBMS software.

For example, such proce­
dures can be used to create exam-

Twelve Rules for Stored Procedures
Stored procedure Implementations that meet the following rules provide a
means for developing flexible RDBMS applications:

Rule 1: Schema transpatency. lnformatlon".'preserving changes to the
DBMS schema have no effect on the Invocation or execution of the
procedure when such changes theoretically permit unimpalrment.

Rule 2: DML and DDL transparency. The particular data manipulation
language (DML) or data definition language (DDL) used In defining the
procedure has no affect on invocation or execution of the procedure,
including changes as severe as selecting SQL versus QUEL

Rule 3: DBMS location transparency. The location of tables on which the
procedure depends does not affect invocation or execution of the
procedure.

Rule 4: Procedure transparency. The procedure is treated like any other
database object, Is maintained In the database system catalog, can be
executed In a manner consistent with the syntax of the DML, and can be
shared by all users.

Rule 5: Domain transparency. Changes to column domains does not affect
Invocation or execution, or parameter definitions.

Rule 6: Syntax transparency. Changes to definition syntax do not change
the Invocation or execution method where changes theoretically permit
unlmpalrment.

Rule 7: Complexity Independence. Invocation and execution Is
Independent of the procedure definition's complexity.

Rule 8: Detailed diagnoatlca. Detailed error information Is available.

Rule 9: DML and DDL completeneaa. All DML and DDL can be used within
a procedure.

Rule 10: No DBMS-Imposed reatrlctionL There are no practical limits on
the number of parameters, statements, or definition size.

Rule 11: Security cornpletenen. A means of controlling execution
permission Is provided, consistent with the DML and DDL

Rule 12: Tranaaction acope Independence. Transactions can span and be
embedded in procedures.

SEPTEMBER 1989
'U

-

•(

ple databases for training pur­
poses. As the example database is
improved, there is no need for the
OBA to create new tables explicitly
since these may be hidden in a
stored procedure. Similarly, if
database statistics encoding changes
(from text to float, for example) or if
information such as the number of
disk I/Os is maintained in a new ta­
ble, a stored procedure can supply
the infonnation in humanly reada­
ble form so that the user is never
aware of the changes.

Very often, entire applica­
tions can be written using stored
procedures. At least two vendors
use stored procedures to enter,
track, and report on customer sup­
port. The application consists of a
set of stored procedures, which be­
come a highly customized com­
m.and-line language.

Even if a command-line driv­
en application is not desirable, it
can be a means of rapidly proto­
typing required functionality. At
the same time, a menu- or win­
dows-driven front end that uses
stored procedures need not con­
tain all the database functionality
during prototyping. This allows
the developer to prototype an rela­
tional DBMS application even be­
fore the database schema is com­
pleted. The developer can use a
test database that need not resem­
ble the final schema.

Over time, SQL redefinition
of the stored procedure can be
made to access the proper tables,
become more complex, and be op­
timized until a fully functional
production system is obtained.
Thus, the development of database
access and manipulation can pro­
ceed in parallel with development
of the user interface and be
merged transparently.

THE FUTURE
We can expect stored procedures
to become even more powerful
than they are today. They figure
prominently in several vendors'
distribution strategies for several
reasons:

0 They minimize network
traffic.

0 They provide site auton­
omy in a way SQL cannot.

0 They can help improve
performance.

To the programmer, the syn-

Stored
procedures can
hide sins that

should not exist
tax to invoke a stored procedure
will be the same regardless of
where the procedure is stored. The
relational DBMS will be able to
migrate the procedure intelligent­
ly to the client or server, depend­
ing on where the procedure is
most often invoked or will be pro­
cessed most efficiently.

Load distribution of this sort
will be very important in complex
distributed systems. Dynamic
load-leveling is not the only way
in which this will work. Where
the network is complex and dis­
tributed query usage patterns are
well-established, dynamic opti­
mization may be too" costly. In­
stead, comprehensive optimization
algorithms may be used to pre­
compile the best distribution and
access plans globally (for all stored
procedures) rather than locally (on
a procedure by procedure basis).

Stored procedures will also
be able to work with user-defined
access methods, including user-de­
fined gateways. Used along with
nested and remote procedure capa­
bility, an evolutionary path to­
wards integrating corporate data
becomes possible.

Even more useful would be a
variation on stored procedures,
which would allow the OBA to de­
fine precisely what is meant by
update, insert, or delete operations
on a view. For example:

CREATE {lf'OATE I rtSERT I DEL£TE} ~ ml
Yiew__name

/.S
BEGW
a.statements
EN>;

Whenever the user issued a
statement like:

any WHERE clause conditions
within the definition of the view
delete would have to be met in

SEPTEMBER 1989
36

conjunction with those specified at
runtime by the user. 1n this way,
the SQL user could use standard
SQL syntax to further manipulate
the view table.

Of course, such a proposal
leads to some interesting prob­
lems. The rules by which such res­
olutions are to be accomplished
would ideally be prescribed by a
standard rather than by the ven­
dor. Nonetheless, I suspect that
most DBAs would rather be able to
update views in a controlled and
vendor-prescribed manner than
not at all.

THE DARK SIDE
All is not rosy in the world of
stored procedures. Though they
provide flexibility, stored proce­
dures can hide a lot of sins that
should not exist. If a stored proce­
dure is improperly defined, the 3GL
designer may not know the ex­
pected functionality is not being
achieved. Similarly, stored proce­
dures make it easier to lose control
of the interaction between SQL and
3GL programs in terms of transac­
tion management and recovery.

As noted earlier, the failure
mode of a particular statement in a
stored procedure can determine
whether it is n~ to rollback
an entire transaction. Multiple pro­
cedures may be invoked within a
transaction, and transactions can ei­
ther begin or end within a proce­
dure. Shifting what work is accom­
plished by a procedure (within a
sequence of procedures) can inad­
vertently move critical work outside
the transaction boundary. As a re­
sult, all the work will not roll­
back on an abort. Avoiding such
possibilities requires good com­
munication between the 3GL and
SQL developer-or profound un­
derstanding if they are one and
the same person.

The potential complexity of
stored procedures makes it dear
that the scope (in terms of the
number and duration of locks ac­
quired) of a stored procedure in a
transaction needs to be examined
and controlled. This is, of course,
no different than the concern one
should have over any transaction.

However, modifying a stored
procedure indiscriminantly can re­
sult in unexpected deadlocks and
excessive lock wait times for other

- ... , _ ,.... ~ ~

applications, especially if transac­
tion management is handled out­
side the stored procedure defini­
tion. For this reason, it is wiser to
write stored procedures as stand­
alone transactions whenever pos­
sible, or for the statements in
them to be outside a transaction
altogether.

Stored procedures can be ex­
tremely powerful. For example, in­
voking a single stored procedure
can cause wholesale update or de­
letion of rows from many tables.
Parameters can control the num­
ber of rows affected in such a pro-

. cedure. In the proper hands, such
power is clearly an advantage
when the parameters are properly
chosen. Because permission to ex­
ecute stored procedures is separate
from that for base tables, a stored
procedure in the wrong hands can
be even more dangerous than (and
can circumvent denial of) write
permission on a critical table since
it can affect many critical tables.

Stored procedures do not al­
leviate the need to understand and
control security in a system. This
need is easier to meet if user secu­
rity groups are classified according
to the "need to execute" groups of
stored procedures. A policy such
as "applications users cannot
modify any base tables" should
then be implemented. Security
concerns emphasize the need for
user-friendly security manage­
ment with relational DBMSs. The
ability to GRANT or REVOKE ex­
ecute permission on entire groups
of stored procedures is highly
desirable.

Problems with stored proce­
dures will probably be solved as
relational DBMS products and ap­
plications development method­
ologies mature. All in all, stored
commands, database procedures,
and stored procedures are very
powerful. They promote exactly
the kind of programming disci­
pline that has long been espoused
and make it possible in a relational,
nonprocedural environment. •

The author would like to thank Ed Horst of Re­
lational Technology Inc. and Howard Tarf of
Sybase for their cooperation.

David McGoveren la pmldent ol Alterna­
tive Technologiee In Senta Cruz, Calif., •
coneultlng firm epeclelizlng in reletlonel
detebue epplicetlonL

I I I I I I I I I I I I I I I I I

1111111111111111111111111
The Implementation To Fit Your Needs

VENDORS REFER TO
stored procedures and

their variants by many names: precom­
piled queries, stored queries, stored
commands, database procedures, pre­
processed procedure blocks, stored
front-end procedures, and database re­
quest module. Depending on what the
vendor had in mind, stored procedure
implementations are equally different.

The following are questions you
might want to use in evaluating wheth­
er a vendor's implementation is appro­
priate to your needs. After this section,
we will look at four implementations of
stored procedures and see how vendors
have answered many of these questions.

1. How many SQL statements
are allowed in a single procedure? If
the implementation allows only a single
SQL statement, little user-defined func­
tional benefit can be achit!ved with the
procedures. Instead, the procedures be­
come a kind of shorthand for specific
user-defined SQL statements.

2. What kinds of SQL statements
are not allowed? If SELECTs are not
fully supported, procedures cannot be
written to generate tabular reports, such
as to view daily balances for a chart of
accounts. If CREATE TABLE is not sup­
ported, then the DBA can't use proce­
dures to manage the schema.

3. What restrictions exist on the
amount of select data or other infor­
mation that can be returned? If the im­
plementation returns only a single _row
or a single column value, extracting vir­
tual tables from the database is
impossible.

4. Can the procedure return error
codes? Without support for error codes,
it's impossible to differentiate between
the errors that might cause a procedure
to end without its desired result.

5. Are error conditions handled
within the procedure? If nested proce­
dures are supported, it's impossible to
maintain the integrity of the sequence
of (possibly conditionally executed)
events the procedure defines. Without
support of nested procedures, the abili­
ty to detect and handle errors in the
procedure eliminates unnecessary han­
dling by applications and standardizes
error processing across the database.

6. If the vendor supports proce­
dural extensions to SQL, which ones
are allowed within a stored procedure?
For example, if it fails to support loop
constructs, the programmer is forced to
code statements explicitly for each iter-

SEPTEMBER 1989
38

ation. This makes the procedure unnec­
essarily complex, and it may then ex­
ceed size limitations.

7. Is the procedure definition
compiled:

0 Down to optimized machine
language? This approach removes the
most overhead under normal condi­
tions. The resulting code is highly effi­
cient, but a degree of flexibility may be
forfeited. It is less likely that such code
is shareable among users or applications
and the cost of recompilation is higher.

0 To an access or query plans
(along with procedural extensions as
necessary)? This eliminates the over­
head incurred in parsing the statements
and selecting an access strategy, leaving
only security checks and parameter sub­
stitution prior to execution.

0 To a query tree? This tech­
nique eliminates parsing overhead, ac­
cess plan selection (optimization), secu­
rity checks, and parameter substitution
that occur prior to execution. If parame­
ter values can affect the optimizer, this
may be better for producing a precom­
piled access plan.

8. Is the procedure definition in­
terpreted (SQL stored as text)? Without
precompilation and with only text
stored, no overhead is saved; the user
must repeatedly process the procedure.

9. Is the procedure definition
stored:

0 In the database? This allows
for automatic recompilation if the sche­
ma or permissions change, and for inte­
grated maintenance source control of
procedure definitions.

0 In a host file? This method
makes it difficult to support automati~
recompilation and may lead to such
problems as multiple versions of the
same procedure.

0 In the 3GL or 4GL program?
When associating a procedure with
such a program, it is unlikely that pro­
cedures are shared across applications. It
defeats the benefit of treating proce­
dures like language extensions to SQL.

10. Can applications share proce­
dure definitions? If not, different appli­
cations can manipulate database data
inconsistently. The proliferation of pro­
cedures represents a code control and
impact analysis problem.

11. Can procedures be invoked
interactively? If not, having to debug
procedures is time-consuming. Further­
more, their benefits can't be passed on
to the interactive user.

. I I I I I I I I I I I ·1 ·1 ·1 I · 1 ·1

..
. . 12. Does the clatabale defed • .

pendency problems: " , ~ ,: r.«

; .. 0 By time and date stamp? This
method compares the time and:date of
the last change of a stored procedure to
that of the object3 on which it depends.
This is a powerful method, which can
consume some overhead each time the
procedure is run.

0 By dependency list? This is a
brute force method that forces recompi­
lation whenever an object on which the
procedure is defined is changed. " ··

D By validity flag? Whenever a
database object is modified, all . proce­
dures on which it depends are marked
as invalid. These procedures are then ei­
ther automatically recompiled ' on the
next invocation or else fail and must be
manually recompiled. ! ' 'This method
malces the overhead at runtime small ·

,;; . D By tail~? Letting the stored
procedure fail (perhaps after ~ful­
ly executing a statement) puts database
integrity at risk. Recovery in tru,;:ytay is
left to the application or, user. · ··~"!;. ·
• :1 0 Not at all? ~If.' no chec:ldng ·is
done and failures are not reported, Pf<>:'
cedu.res cari. be used only in no~aiti~
or static . datal~.~-~ ~~ty can't be
guaranteed. .. ,~,1'ft~~-r,~:-- 1 ·· .

I ! I
\.. \t : f ,1; • .: •.

'-.· ~· '13. H~~ does the :bb~ ~; tion is to use a relty m~m within
BOlve dependency problems: . ·· · the application or to take dependent

· . · D Automatically at execution applications offline for a short time
time? This technique frequently elimi- while redefinition takes place.
nates manual intervention in maintain· . il,!;. 0 Manually? Manual redefini­
ing stored procedure definitions. But, tion and resolution of dependency
resolution automatically at. execution problems . require using all the usual
time could introdure semantic errors in techniques for source code control and
processing. Thus, the first invocation new version release. Runtime over­
after a change could be delayed. head is eliminated. If the system man-

0 Automatically when the de- ager is clever, tools can be developed
pendency is changed? This technique that aid the process.
eliminates overhead at first invocation, 14.. When ' invoked, can these
but may inadvertently make concur- proeedures take formal parameters:
rently running applications that ~ .. , ~· \ 0 Ordered list? An ordered list
the procedure unrunnable. The solu- eliminates semantic coupling between
· "~ . ·. " , · ,,, ,·, -.'.· the definition of procedure variables
lll'lml Z. Syntax used by Shartlnz.se. and application variables. This is both

a. blessing and a curse since errors are
harder to detect, but higher mod~
ity is achieved.
; t·' .. D Named list? This eliminates

. the possibility of passing the wrong
·value to a particular parameter, but se-
· mantic. coupllng of this sort decreases
modularity. If parameter ' names are
chaiiged, applications must be edited
and recompiled to reflect the change.
· D With automatic data type

·conversion? If this is is not supported,
the eter• · in mechanism is

THE RELATIONAL INSTITUTE PRESENTS

DISTRIBUTED DATABASE '89
October 24-26, 1989 - .Fairmont Hotel - San Jose, California

Join DR. E.F. CODD, CHRIS DATE, and COLIN WHITE In the essentials of Distributed
Databases, today and tomorrow. learn from the vendors of products which cross all
current platforms .. .from PC-MINI-to MAINFRAME.

Event will cover issues on Vendors

• 12 Rules of Distributed Database • Clncom Systems. Inc.
• Applying the Technology • Computer Associates, lnt'I.
• Issues and Applications • Digital Equipment Corporation (DEC)
• Nonlocklng Concurrency • lnformix Software, Inc.
• Heterogeneous DDBMS(s) • lnterbase Software, Inc.
• The Marketplace • Oracle Corporation
• Distribution Independence • Relational Technology Inc. (RTI)
• What the Future Holds • Tandem Computers, Inc.

• Sybase, Inc. • Via lnforma~on Systems, Inc. • Microrim
WHO SHOULD ATTEND?
Data processing or computer science professionals, system planners, database
administrators, system architects, and managers.

For registration or information call THE RELATIONAL INSTITUTE (408) 268-8821 [R!=--1---t)
Suite 106, 6489 Camden Avenue, San Jose, CA 95120, FAX (408) 997-6641 or our
east coast number (201) 906-7979, FAX (201) 906-7993 - 24 Hour Registration.

CIRCLE 19 ON READER SERVICE CARD

·=·

i

, I
I
11

I I I I I I I I I I I I I I I I I

11111111111111111111111111111111111111
strongly typed. While aiding debug­
ging, this forces the application to per­
form the type conversions.

15. What is the maximum num­
ber of parameters allowed? If too few
parameters can be passed, multiple ap­
plications can't be supported. It isn't
uncommon in complex database appli­
cations to encounter wide tables; thus,
an update in a procedure requires at
least as many parameters as there can
be columns in the table.

16. Is the optimizer syntax-sen­
sitive for a stored procedure? Opti­
mizer syntax sensitivity is unfortunate
in any case. However, a stored proce­
dure should hide the definition from
the use.r as much as possible. In this
way, changes to the schema can be rel­
atively transparent to users and ap­
plications ("schema transparency'').
While such transparency can never be
perfect, it is a goal optimizer syntax
sensitivity defeats.

17. What diagnostic informa­
tion is returned and how can it be
processed:

0 Upon failure, is a definitive
error code returned? It is essential to
know whether or not the error is due
to a failure of the procedure definition
or a missing procedure definition.

0 Is a single success or failure
code returned for the entire proce­
dure? If the success or failure of the
procedure as a whole is all that is re­
ported, it becomes difficult to write er­
ror-processing code. Alternatively, if
success or failure is returned as a first
order error code with more detail
available via a special function call or
access to a special error structure, it is
possible to write more efficient error
processing code than if only detail
codes are returned.

0 Upon failure, can the state­
ment number and type be identified?
When attempting to debug a failed
procedure, it is important to know
which statement failed. At runtime,
much modularity can be achieved in
processing the code if the type of
statement can be identified. In particu­
lar, it is important to know whether a
table will be returned by the next
statement. Similarly, knowing how
many rows are affected by each state­
ment can be helpful, although this
should be a gerwral characteristic of
the 3GL or 4GL interface, whether em­
bedded or runtime.

0 Can exception handlers be
declared to respond to particular er­
rors? This kind of error processing is
extremely efficient and clearly neces­
sary for a proper interface to 3GLs. ·

18. Are dependencies identified
and maintained automatically? This
lets the vendor or user design a data­
base schema impact analysis tool. If
the user is able to associate procedures
with applications that use them and
associate between the program varia·
bles and parameters, select lists, error,
or return parameters, it is possible to
develop full impact analysis tools.
Without impact analysis, maintenance
becomes laborious.

Here's how IBM's 082, Share­
base's Sharebase, Sybase's Sybase, and
Relational Technology lnc.'s Ingres
answer many of these questions.

082.. When a DB2 3GL program
is precompiled, the SQL statements
are stripped out and replaced by host
language CALL statements. The SQL
statements are converted by the SQL
compilation step (bind) into an opti­
mized machine code called a Database
Request Module, which is then stored
~n the system catalog or dictionary for
access by the runtim~ supervisor.

If a database object is altered,
082 checks all application plans and
marks them as invalid if they depend
on the object. When such an invalid
plan is retrieved for execution, it is
then recompiled. It causes a slight de­
lay for the user, but is otherwise trans-

LIS1Wi8 3. Syntax used by Sybase.

parent unless an object necessary to
the execution of the SQL is no longer
appropriate and no replacement object
is available.

Database Request Modules a.re a
very primitive kind of stored proce­
dure. They are compiled, thus elimi­
nating some of the overhead associat­
ed with parsing and generating access
plans. The modules are stored in the
database under the system catalog.
They can consist of any valid DB2
SQL. However, they may not be
shared by applications and do not sup­
port procedural extensions to SQL. Re­
compilation is automatic.

Sharebase. Previously known as
Britton Lee, Sharebase has provided
what they call "stored commands.''
The relational DBMS is an interpretive
system. Stored commands consist of
one or more SQL (or IDL, a variant on
QUEL) statements. Since Sharebase
does not offer procedural extensions
to the query language, non-SQL or
non-IDL statements may not be in­
cluded. They may be defined interac­
tively or from a 3GL program (using
precompilers or the call interface).

Stored commands can take ei­
ther a named or an ordered list of for­
mal parameters. There are no limita­
tions on the amount of select data that

~ .CREATE PROCmllE { Olnlf' .)proc~[:!Uber] . ..
.... ;;, .. -: [[()Oplr..ter_sme dltatype. [•.dtf~t] [Mput) ' . '
.. ;.~ ' (. Opanater_nme da~ t• def~t] [WTput]]: .;E)]l
{ • • ~ < [lint RECt11'1L£} , • . \

~~ : ~ ,. If, _..• •
"'. . AS~ •• '1~"t; .., -.,,

··~ [EXEtute] c._fetinutatus i 1 . :- '\ . . .
~ - ·#)' ([[server.]~abast .]onr.]proc~[;ruber] · . • ..
-.- ',. ([oPBr•ter.J191 •] value I . , · · -·~;···

[oPar•ter....nme •J 0¥er11111ie [WTput) · · ~·"'·:"i):;
. [,[OpanaterJ!ml, •)1 Value I ,. · . . .,<,*~ff>:
.. · Coi>r•ter.Jl91 ·J ovrte1>1~ [~put] .. . JFJ'":i.:,,

: [JITII RECllPILE] ' .• · · . .- • :

·.; . GRANT mom Oii procecU-U191 TIJ {P\ll.I~ I rme.Jist} '

.. ; . DROP PROCecin cc c1ate1>asi;)Olnll'.)proc~ ·. ,_ ~ ~ ~.
c~ ([1111tebest.JOlllef.JproceckftJ1mJ ..• : ;~·-<~· . ·:rr:"·, , ·,_.: ~
· ..: :.:·· r~ , ~ t·. -... ; • ···· f

• NOTES ·•' ··• . · ,.. ·, •· · ·' !,. •. • . ·<:· '·•.>! .t ·-;·.;..: .. ~. . 1
.. _, :~ ... ~.':•r.1· .. :., \-1;',-•<°' "", ,., ~·.,,-.._,~~.t-~ .. 1-,;,.T ... ~

, . . 11 The ";number.'.' option allows grouped procedures. Which can be dropped by a .
·-. single DROP PROCEDURE statement. Procedures within tJl9 group can then not be

dropped Individually:: ~ '.,:~. : · ~: . .; · : • ·~ : · •.
.. ·. 2. The. "def&ult'.~ optlori a1b- thct~tlOn of a de~t va1U. for ~en

{-=er~~n==~·~.~~:~~,~~?~;~ 1
''. 3. The "QUTput'' option shows that the parameter as a return· parameter. This pr0- !
'\. v1des a caJl.by-reference capablltty so vatlables can be modltled by the' procedure; .:. I
·;- _ · 4. The _~'WfTH RECOMPILE' option on <?REATE PROCEDURE means that SQL · · . I

~ Server wlr never. save a plan for this procedure. but will create a new one eadl time 1
• the procedure Is lnYoked. When .used wfth EXECUTE, "WITH RECOMPILE" fcirces ~

' • compllatlOn ·of a neW plan for use during that lnYoc;atlon orily. . · ·· · · · , ..
~.

SEPTEMBER 1989
42

111111 1 111 1 111111

1 11111 1 i ~ 1 111 ! I I l 1 1 1 11 111 1 1 1 1 i I . I : I l l I . 11 . I ! 1 1 1

can be returned; however, the state­
ments in a stored command either pro­
cess normally or the stored command
fails. Data type conversion is automat­
ic, although some restrictions apply.

When a stored command is de­
fined, a parameterized query tree is
produced and stored in the dictionary.
On subsequent invocations, no pars­
ing is required and all objects refer­
enced by the stored command are
able to be solved into internal name­
independent references.

A query plan (and other process­
ing options) may be stored with the
command, further reducing overhead
accrued due to selection of a query
plan. A dependency list is maintained
showing what stored commands and
views depend on what database ob­
jects. If an attempt is made to drop an
object, all dependent objects must be
dropped first and then subsequently
recompiled. Stored commands may be
shared by multiple applications.

Any statement that creates an ob­
ject such as a table, view, or stored
command is not allowed. Any other
statement is allowed. The number of
parameters allowed and the maximum
amount of text that can be used to de­
fine a stored command are determined
by settable parameters. The syntax used
by Sharebase is shown in Listing 2.

Sybase. Sybase provides what
they call stored procedures. Sybase's
stored procedures can contain any
number of "Transact-SQL" statements
except for those that create certain ob­

.)eds {described in a moment). Since
transact-SQL provides for procedural
extensions to SQL, this is an appropri­
ate name. Stored procedures may be
defined interactively or through the
3GL call interface. They can take for­
mal parameters at execution time, ei­
ther as an ordered or a named list.

When a stored procedure is first
executed, it is compiled down to a que­
ry plan, which is stored in the data-

LISTWm 4. Syntax used by Ingres.

base. Automatic recompilation will oc­
cur at invocation if any object on
which the stored procedure depends
has been altered since its definition.
The query processor parses the state­
ments and produces optimized query
plans. These are stored in the database
and may be shared by all users. Execu­
tion of stored procedures can be con­
trolled by an extension to the SQL
GRANT command.

By issuing an UPDATE STAT!~
TICS command, access plans for all
stored procedures !1I"e automatically
reevaluated. The Sybase query op~
er is sensitive to statistics.

Stored procedures can reference
objects in multiple databases and on re­
mote servers. The procedures can also
be nested. SQL statements allowed in
stored procedures include control of
flow language such as DECLARE,
WHILE, BREAK, and GOTO; CREATE
VIEW, DEFAULT, RULE, TRIGGER, and
USE or CREATE PROCEDURE are not
allowed. Multiple conditional returns
from the procedure are supported.

The · maximum parameters al­
lowed in a Sybase procedure is 255.
Since variables used as stored procedure
parameters are not part of the database,
rolling back a transaction will not roll
back these variables. This means that
transaction management in the 3GL and
4GL code must be written so as to roll­
back these variables as well While this
problem is not specific to stored proce­
dures, it is a common source of prob­
lems in relational applications.

The maximum text in a stored
procedure is 65.280 characters. You can
rename ·a procedure. The procedure
definition is stored in the system cata­
log and can be displayed at any time. :
The query plan for a three to four state­
ment procedure will use two to foUr ki­
lobytes (kB) of cache memory. The syn­
tax Sybase uses is shown in Listing 3.

Ingres. Ingres v. 6.1 supports
"database procedures" (to emphasiz.e

DATABASE PROGRAMMING & DESIGN
43

that they are stored in the database).
Like Sybase, Ingres database procedures
support procedural extensions to SQL.
When a database procedure is first in­
voked, the Ingres database engine looks
up the definition in the catalog, com­
piles it, and produces a compiled query
plan. Database procedures take a named
list of formal parameters. Ingres auto­
matically recompiles the database proce­
dure if objects on which the procedure
depends change or if an UPDATE
STATISTICS is executed.

Database procedures may be
shared by applications. They can be in­
voked interactively, through Applica­
tions by Forms (ABF) or embedded
SQL. Execute permission is distinct
from permission on the objects on
which the database procedure depends.

The Ingres optimi.z.er is sensitive
to statistics like the selectivity of index­
es and to distrlbution of data values.
Thus, the UPDATE STATISTICS com­
mand can affect the query plan.

Ingres database procedures look
identical to procedures defined in the
ABF 4GL product. Th.is lets ABF proce­
dures to be replaced by database proce-·
dures transparently to the application.
They are a natural extension to an idea
long available in Ingres, that of a "re­
peated" query. Specifying a query as
repeated informs the optimizer to save
the query plan for repeated execution
during the life of the application. Data­
base procedures add procedural lan­
guage enhancements, parameters, error
returns, and longer term storage of the
query plan.

Databal!e procedures can handle a
maximum of 127 parameters in the cur­
rent release and will be able to handle
300· parameters in the next release.
There is no practical limit on the
amount of text that defines a procedure
and which is stored formatted in the
database. Any data.type and legal SQL
statement can be used. Each procedure
uses about one kB of fixed overhead
and typically one to two kB for each
SQL statement. Thus, a three- to four­
statement procedure might require five
to nine kB when compiled into an ac­
cess plan. The maxi.mum size access
plan supported Is determined by a user­
adjustable parameter.

Presently, database procedures
can't declare a cursor. Hence, multiple
row select results cannot be returned
from a database procedure. In keeping
with the syntax of embedded SQL, In­
gres will solve this problem by allow­
ing a database procedure to declare a
cursor on behalf of the front end. •

- Dlftlid McCoveran

